# Einstein relation (kinetic theory)

In physics (specifically, the kinetic theory of gases), the **Einstein relation** is a previously unexpected^{[clarification needed]} connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is

- D is the diffusion coefficient;
- μ is the "mobility", or the ratio of the particle's terminal drift velocity to an applied force,
*μ*=*v*_{d}/*F*; *k*_{B}is the Boltzmann constant;- T is the absolute temperature.

This equation is an early example of a fluctuation-dissipation relation. Note that the equation above describes the classical case and should be modified when quantum effects are relevant.

Two frequently used important special forms of the relation are:

**Einstein–Smoluchowski equation**, for diffusion of charged particles:**Stokes–Einstein–Sutherland equation**, for diffusion of spherical particles through a liquid with low Reynolds number:

Here

- q is the electrical charge of a particle;
*μ*is the electrical mobility of the charged particle;_{q}- η is the dynamic viscosity;
- r is the radius of the spherical particle.

## Special cases

### Electrical mobility equation (classical case)

For a particle with electrical charge q, its electrical mobility *μ _{q}* is related to its generalized mobility μ by the equation

*μ*=

*μ*/

_{q}*q*. The parameter

*μ*is the ratio of the particle's terminal drift velocity to an applied electric field. Hence, the equation in the case of a charged particle is given as

_{q}where

- is the diffusion coefficient ().
- is the electrical mobility ().
- is the electric charge of particle (C, coulombs)
- is the electron temperature or ion temperature in plasma (K).

If the temperature is given in volts, which is more common for plasma:

- is the charge number of particle (unitless)
- is electron temperature or ion temperature in plasma (V).

### Electrical mobility equation (quantum case)

For the case of Fermi gas or a Fermi liquid, relevant for the electron mobility in normal metals like in the free electron model, Einstein relation should be modified:

### Stokes–Einstein–Sutherland equation

In the limit of low Reynolds number, the mobility *μ* is the inverse of the drag coefficient . A damping constant is frequently used for the inverse momentum relaxation time (time needed for the inertia momentum to become negligible compared to the random momenta) of the diffusive object. For spherical particles of radius *r*, Stokes' law gives

In the case of rotational diffusion, the friction is , and the rotational diffusion constant is

### Semiconductor

In a semiconductor with an arbitrary density of states, i.e. a relation of the form between the density of holes or electrons and the corresponding quasi Fermi level (or electrochemical potential) , the Einstein relation is

### Nernst–Einstein equation

By replacing the diffusivities in the expressions of electric ionic mobilities of the cations and anions from the expressions of the equivalent conductivity of an electrolyte the Nernst–Einstein equation is derived:

*R*is the gas constant.

## Proof of the general case

The proof of the Einstein relation can be found in many references, for example see the work of Ryogo Kubo.

Suppose some fixed, external potential energy generates a conservative force (for example, an electric force) on a particle located at a given position . We assume that the particle would respond by moving with velocity (see Drag (physics)). Now assume that there are a large number of such particles, with local concentration as a function of the position. After some time, equilibrium will be established: particles will pile up around the areas with lowest potential energy , but still will be spread out to some extent because of diffusion. At equilibrium, there is no net flow of particles: the tendency of particles to get pulled towards lower , called the *drift current*, perfectly balances the tendency of particles to spread out due to diffusion, called the *diffusion current* (see drift-diffusion equation).

The net flux of particles due to the drift current is

The flow of particles due to the diffusion current is, by Fick's law,

Now consider the equilibrium condition. First, there is no net flow, i.e. . Second, for non-interacting point particles, the equilibrium density is solely a function of the local potential energy , i.e. if two locations have the same then they will also have the same (e.g. see Maxwell-Boltzmann statistics as discussed below.) That means, applying the chain rule,

Therefore, at equilibrium:

As this expression holds at every position , it implies the general form of the Einstein relation:

The relation between and for classical particles can be modeled through Maxwell-Boltzmann statistics

Under this assumption, plugging this equation into the general Einstein relation gives: