Kilobyte

Multiple-byte units
Decimal
Value Metric
1000 103 kB kilobyte
10002 106 MB megabyte
10003 109 GB gigabyte
10004 1012 TB terabyte
10005 1015 PB petabyte
10006 1018 EB exabyte
10007 1021 ZB zettabyte
10008 1024 YB yottabyte
10009 1027 RB ronnabyte
100010 1030 QB quettabyte
Binary
Value IEC Memory
1024 210 KiB kibibyte KB kilobyte
10242 220 MiB mebibyte MB megabyte
10243 230 GiB gibibyte GB gigabyte
10244 240 TiB tebibyte TB terabyte
10245 250 PiB pebibyte
10246 260 EiB exbibyte
10247 270 ZiB zebibyte
10248 280 YiB yobibyte
10249 290
102410 2100
Orders of magnitude of data

The kilobyte is a multiple of the unit byte for digital information. The International System of Units (SI) defines the prefix kilo as a multiplication factor of 1000 (103); therefore, one kilobyte is 1000 bytes. The internationally recommended unit symbol for the kilobyte is kB.

In some areas of information technology, particularly in reference to random-access memory capacity, kilobyte instead typically refers to 1024 (210) bytes. This arises from the prevalence of sizes that are powers of two in modern digital memory architectures, coupled with the coincidence that 210 differs from 103 by less than 2.5%. A kibibyte is 1024 bytes.

Definitions and usage

Decimal (1000 bytes)

In the International System of Units (SI) the metric prefix kilo means 1000 (103); therefore, one kilobyte is 1000 bytes. The unit symbol is kB.

This is the definition recommended by the International Electrotechnical Commission (IEC). This definition, and the related definitions of the prefixes mega (1000000), giga (1000000000), etc., are most commonly used for data transfer rates in computer networks, internal bus, hard drive and flash media transfer speeds, and for the capacities of most storage media, particularly hard disk drives, flash-based storage, and DVDs. It is also consistent with the other uses of the metric prefixes in computing, such as CPU clock speeds or measures of performance.

The international standard IEC 80000-13 uses the term "byte" to mean eight bits (1 B = 8 bit). Therefore, 1 kB = 8000 bit. One thousand kilobytes (1000 kB) is equal to one megabyte (1 MB), where 1 MB is one million bytes.

Binary (1024 bytes)

The term 'kilobyte' has traditionally been used to refer to 1024 bytes (210 B). The usage of the metric prefix kilo for binary multiples arose as a convenience, because 1024 is approximately 1000.

The binary interpretation of metric prefixes is still prominently used by the Microsoft Windows operating system. Binary interpretation is also used for random-access memory capacity, such as main memory and CPU cache size, due to the prevalent binary addressing of memory.

The binary meaning of the kilobyte for 1024 bytes typically uses the symbol KB, with an uppercase letter K. The B is sometimes omitted in informal use. For example, a processor with 65,536 bytes of cache memory might be said to have "64 K" of cache. In this convention, one thousand and twenty-four kilobytes (1024 KB) is equal to one megabyte (1 MB), where 1 MB is 10242 bytes.

In December 1998, the IEC addressed such multiple usages and definitions by creating prefixes such as kibi, mebi, gibi, etc., to unambiguously denote powers of 1024. Thus the kibibyte, symbol KiB, represents 210  bytes = 1024 bytes. These prefixes are now part of IEC 80000-13. The IEC further specified that the kilobyte should only be used to refer to 1000 bytes. The International System of Units restricts the use of the SI prefixes strictly to powers of 10.

Use of term

  • The Shugart SA-400 514-inch floppy disk (1976) held 109,375 bytes unformatted, and was advertised as "110 Kbyte", using the 1000 convention. Likewise, the 8-inch DEC RX01 floppy (1975) held 256,256 bytes formatted, and was advertised as "256k". On the other hand, the Tandon 514-inch DD floppy format (1978) held 368,640 (which is 360×1024) bytes, but was advertised as "360 KB", following the 1024 convention.
  • Early home computer systems would often advertise using the 1024 convention, hence the naming of the Commodore 64, Commodore 128, and the Amstrad CPC 464.
  • On modern systems, all versions of Microsoft Windows including the newest (as of 2019) Windows 10 divide by 1024 and represent a 65,536-byte file as "64 KB". Conversely, Mac OS X Snow Leopard and newer represent this as 66 kB, rounding to the nearest 1000 bytes. File sizes are reported with decimal prefixes.
  • As of 2016, the binary interpretation was still used in marketing and billing by some telecommunication companies, such as Vodafone, AT&T, Orange and Telstra.

Data examples

See also


This page was last updated at 2024-04-16 09:55 UTC. Update now. View original page.

All our content comes from Wikipedia and under the Creative Commons Attribution-ShareAlike License.


Top

If mathematical, chemical, physical and other formulas are not displayed correctly on this page, please useFirefox or Safari