List of planar symmetry groups

This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane:

Rosette groups

There are two families of discrete two-dimensional point groups, and they are specified with parameter n, which is the order of the group of the rotations in the group.

Family Intl
(orbifold)
Schön. Geo
Coxeter
Order Examples
Cyclic symmetry n
(n•)
Cn n
[n]+
n
C1, [ ]+ (•)

C2, [2]+ (2•)

C3, [3]+ (3•)

C4, [4]+ (4•)

C5, [5]+ (5•)

C6, [6]+ (6•)
Dihedral symmetry nm
(*n•)
Dn n
[n]
2n
D1, [ ] (*•)

D2, [2] (*2•)

D3, [3] (*3•)

D4, [4] (*4•)

D5, [5] (*5•)

D6, [6] (*6•)

Frieze groups

The 7 frieze groups, the two-dimensional line groups, with a direction of periodicity are given with five notational names. The Schönflies notation is given as infinite limits of 7 dihedral groups. The yellow regions represent the infinite fundamental domain in each.

[1,∞],
IUC
(orbifold)
Geo Schönflies Coxeter Fundamental
domain
Example
p1m1
(*∞•)
p1 C∞v [1,∞]

sidle
p1
(∞•)
p1 C [1,∞]+

hop
[2,∞+],
IUC
(orbifold)
Geo Schönflies Coxeter Fundamental
domain
Example
p11m
(∞*)
p. 1 C∞h [2,∞+]

jump
p11g
(∞×)
p.g1 S2∞ [2+,∞+]

step
[2,∞],
IUC
(orbifold)
Geo Schönflies Coxeter Fundamental
domain
Example
p2mm
(*22∞)
p2 D∞h [2,∞]

spinning jump
p2mg
(2*∞)
p2g D∞d [2+,∞]

spinning sidle
p2
(22∞)
p2 D [2,∞]+

spinning hop

Wallpaper groups

The 17 wallpaper groups, with finite fundamental domains, are given by International notation, orbifold notation, and Coxeter notation, classified by the 5 Bravais lattices in the plane: square, oblique (parallelogrammatic), hexagonal (equilateral triangular), rectangular (centered rhombic), and rhombic (centered rectangular).

The p1 and p2 groups, with no reflectional symmetry, are repeated in all classes. The related pure reflectional Coxeter group are given with all classes except oblique.

Square
[4,4],
IUC
(Orb.)
Geo
Coxeter Domain
Conway name
p1
(°)
p1

Monotropic
p2
(2222)
p2
[4,1+,4]+

[1+,4,4,1+]+

Ditropic
pgg
(22×)
pg2g
[4+,4+]

Diglide
pmm
(*2222)
p2
[4,1+,4]

[1+,4,4,1+]

Discopic
cmm
(2*22)
c2
[(4,4,2+)]

Dirhombic
p4
(442)
p4
[4,4]+

Tetratropic
p4g
(4*2)
pg4
[4+,4]

Tetragyro
p4m
(*442)
p4
[4,4]

Tetrascopic
Rectangular
[∞h,2,∞v],
IUC
(Orb.)
Geo
Coxeter Domain
Conway name
p1
(°)
p1
[∞+,2,∞+]

Monotropic
p2
(2222)
p2
[∞,2,∞]+

Ditropic
pg(h)
(××)
pg1
h: [∞+,(2,∞)+]

Monoglide
pg(v)
(××)
pg1
v: [(∞,2)+,∞+]

Monoglide
pgm
(22*)
pg2
h: [(∞,2)+,∞]

Digyro
pmg
(22*)
pg2
v: [∞,(2,∞)+]

Digyro
pm(h)
(**)
p1
h: [∞+,2,∞]

Monoscopic
pm(v)
(**)
p1
v: [∞,2,∞+]

Monoscopic
pmm
(*2222)
p2
[∞,2,∞]

Discopic
Rhombic
[∞h,2+,∞v],
IUC
(Orb.)
Geo
Coxeter Domain
Conway name
p1
(°)
p1
[∞+,2+,∞+]

Monotropic
p2
(2222)
p2
[∞,2+,∞]+

Ditropic
cm(h)
(*×)
c1
h: [∞+,2+,∞]

Monorhombic
cm(v)
(*×)
c1
v: [∞,2+,∞+]

Monorhombic
pgg
(22×)
pg2g
[((∞,2)+)[2]]

Diglide
cmm
(2*22)
c2
[∞,2+,∞]

Dirhombic
Parallelogrammatic (oblique)
p1
(°)
p1

Monotropic
p2
(2222)
p2

Ditropic
Hexagonal/Triangular
[6,3], / [3[3]],
IUC
(Orb.)
Geo
Coxeter Domain
Conway name
p1
(°)
p1

Monotropic
p2
(2222)
p2
[6,3]Δ
Ditropic
cmm
(2*22)
c2
[6,3]
Dirhombic
p3
(333)
p3
[1+,6,3+]

[3[3]]+

Tritropic
p3m1
(*333)
p3
[1+,6,3]

[3[3]]

Triscopic
p31m
(3*3)
h3
[6,3+]

Trigyro
p6
(632)
p6
[6,3]+

Hexatropic
p6m
(*632)
p6
[6,3]

Hexascopic

Wallpaper subgroup relationships

Subgroup relationships among the 17 wallpaper group
o 2222 ×× ** 22× 22* *2222 2*22 442 4*2 *442 333 *333 3*3 632 *632
p1 p2 pg pm cm pgg pmg pmm cmm p4 p4g p4m p3 p3m1 p31m p6 p6m
o p1 2
2222 p2 2 2 2
×× pg 2 2
** pm 2 2 2 2
cm 2 2 2 3
22× pgg 4 2 2 3
22* pmg 4 2 2 2 4 2 3
*2222 pmm 4 2 4 2 4 4 2 2 2
2*22 cmm 4 2 4 4 2 2 2 2 4
442 p4 4 2 2
4*2 p4g 8 4 4 8 4 2 4 4 2 2 9
*442 p4m 8 4 8 4 4 4 4 2 2 2 2 2
333 p3 3 3
*333 p3m1 6 6 6 3 2 4 3
3*3 p31m 6 6 6 3 2 3 4
632 p6 6 3 2 4
*632 p6m 12 6 12 12 6 6 6 6 3 4 2 2 2 3

See also

Notes

  1. ^ The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF [1]
  2. ^ Coxeter, (1980), The 17 plane groups, Table 4

This page was last updated at 2024-02-13 03:34 UTC. Update now. View original page.

All our content comes from Wikipedia and under the Creative Commons Attribution-ShareAlike License.


Top

If mathematical, chemical, physical and other formulas are not displayed correctly on this page, please useFirefox or Safari