Rule-based machine learning

Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system.

Rule-based machine learning approaches include learning classifier systems, association rule learning, artificial immune systems, and any other method that relies on a set of rules, each covering contextual knowledge.

While rule-based machine learning is conceptually a type of rule-based system, it is distinct from traditional rule-based systems, which are often hand-crafted, and other rule-based decision makers. This is because rule-based machine learning applies some form of learning algorithm to automatically identify useful rules, rather than a human needing to apply prior domain knowledge to manually construct rules and curate a rule set.

Rules

Rules typically take the form of an '{IF:THEN} expression', (e.g. {IF 'condition' THEN 'result'}, or as a more specific example, {IF 'red' AND 'octagon' THEN 'stop-sign}). An individual rule is not in itself a model, since the rule is only applicable when its condition is satisfied. Therefore rule-based machine learning methods typically comprise a set of rules, or knowledge base, that collectively make up the prediction model.

See also


This page was last updated at 2024-04-17 20:41 UTC. Update now. View original page.

All our content comes from Wikipedia and under the Creative Commons Attribution-ShareAlike License.


Top

If mathematical, chemical, physical and other formulas are not displayed correctly on this page, please useFirefox or Safari